ニュートン法

2010/9/6

1 ニュートン法

ニュートン法は、非線形方程式など、解析的に解けない方程式の解を求めるために編み出された方法で、古くから数値計算に用いられている。

1.1 基本原理

方程式

$$f(x) = 0 (1)$$

の解 $x=x_0$ を考える。 $x=x_0$ の近傍の値 $x=x_1$ における y=f(x) 上の点 A_1 を $(x_1,f(x_1))$ と書く。

さて、y = f(x) 上の点 A_1 における接線 l_1 の方程式は、

$$y - f(x_1) = f'(x_1)(x - x_1) \tag{2}$$

と書ける。この接線 l_1 が x 軸と交わる点の座標を $(x_2,0)$ とすると、

$$0 - f(x_1) = f'(x_1)(x_2 - x_1)$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
(3)

と表すことができる。さらに、y=f(x) 上に新たな点 A_2 $(x_2,f(x_2))$ を用意して、点 A_2 を通る接線 l_2 の方程式を求め、 l_2 と x 軸が交わる点の座標を $(x_3,0)$ とする。これを繰り返し行った x_n が f(x)=0 の近似解を与える。

1.2 繰り返し計算の打ち切り

繰り返し計算をどこで終わらせるかという問題である。次の2つが議論されたが、精度を求めるのであれば前者の方がよい、という結論に至った。

- $|f(x_n)|^2 < \epsilon$
- $\bullet |x_n x_{n-1}| < \epsilon$

ここで ϵ は自分で決めた、適当な小さい正の数である。

1.3 2変数関数、多変数関数のニュートン法

これまでは1変数関数のニュートン法を考えたが、2変数、もしくはそれ以上の関数の方程式にニュートン法は適用できるかを議論する。

地球から球状星団M 5 1までの距離を考える。

表 1 は、M 5 の H R 図であり、横軸は B-V、縦軸は V バンドの見かけの等級 m_v である。星団内のそれぞれの星までの距離は同じであるから、次式により、どの星であってもみかけの等級と絶対等級の差 m-M は同じになる:

$$m - M = 5\log_{10} d - 5 = \text{const}$$
 (4)

したがって、みかけの等級mでプロットしてもHR図が得られる。

- (1) 表より、模式的なHR図を作成し、これとM5のHR図が重なるようにするには m-M をいくつにしなければならないか。
- (2) M 5 までの距離は何 pc になるか。
- (3) RR Lyr 型変光星の V バンドの絶対等級は何等か。
- (4) RR Lyr 型変光星の絶対等級はすべて等しいと仮定した場合、V バンドのみかけの等級が 14.6 等である RR Lyr 型変光星の含まれる球状星団は何 pc の距離にあるか。
- (5) 天体から届く光は、我々の銀河系の中にある星間物質の影響で一般に減光を受ける。もし、銀河系内で $1 \mathrm{kpc}$ につき 0.7 等の減光を受けているとすると、 $m_\mathrm{v}=14.6$ の RR Lyr 型が含まれる球状星団までの距離はどうなるか。ただし、球状星団M 5 の H R 図はすでに減光の影響は補正してあるものとする。

¹最古の球状星団の一つ

MK スペクトル分類と絶対等級

spectrum type	V	IV	III	II	Ib	Iab	Ia	Ia-0
O5	-5.50	-5.80	-6.00	-	-	-	-6.80	-
O7	-5.00	-5.50	-5.50	-5.80	-6.30	-	-7.20	-
O9	-4.50	-4.90	-5.20	-5.80	-6.30	-6.50	-7.20	-
B1	-3.20	-3.80	-4.30	-5.10	-5.80	-6.50	-7.00	-8.50
В5	-0.80	-1.20	-1.70	-4.60	-5.80	-6.50	-7.00	-
A0	0.80	0.40	-0.10	-3.40	-5.20	-6.60	-7.10	-
A5	1.90	1.40	0.80	-2.90	-5.00	-6.80	-8.00	-
F0	2.80	2.20	1.50	-2.70	-5.00	-7.00	-8.50	-
F5	3.60	2.60	2.00	-2.60	-4.80	-7.00	-8.00	-
G0	4.40	2.90	1.50	-2.40	-4.50	-6.80	-8.20	-9.20
G5	5.10	3.10	1.00	-2.40	-4.50	-6.20	-8.20	-9.40
K0	6.00	3.20	0.80	-2.50	-4.50	-6.00	-7.90	-9.40
K5	7.30	-	0.30	-2.60	-5.10	-6.00	-7.20	-
M0	8.90	-	-0.60	-2.80	-5.30	-5.80	-6.90	-
M2	10.00	-	-0.90	-3.00	-5.30	-5.80	-6.90	-8.00
M5	13.50	-	-0.10	-3.10	-5.30	-5.80	-6.90	-

MK スペクトル分類と絶対等級

spectrum type	V	IV	III	II	Ib	Iab	Ia	Ia-0
O5	-0.32	-0.32	-0.32	-	-	-	-	-
O7	-0.32	-0.32	-0.32	-	-	-	-	-
O9	-0.31	-0.31	-0.31	-0.31	-0.28	-0.28	-0.28	-0.28
B1	-0.26	-0.26	-0.26	-0.24	-0.19	-0.19	-0.19	-0.19
В5	-0.16	-0.16	-0.16	-0.14	-0.09	-0.09	-0.09	-0.09
A0	-0.01	-0.02	-0.03	0.00	0.00	0.01	0.02	0.01
A5	0.15	0.15	0.15	0.10	0.10	0.10	0.10	0.10
F0	0.32	0.30	0.32	0.21	0.15	0.15	0.15	0.15
F5	0.45	0.44	0.43	0.38	0.26	0.26	0.26	0.26
G0	0.60	0.63	0.64	0.73	0.82	0.82	0.82	0.82
G5	0.68	0.70	0.90	0.87	1.00	1.00	1.00	1.00
K0	0.81	0.91	1.01	1.06	1.18	1.18	1.18	1.18
K5	1.15	-	1.51	1.45	1.60	1.60	1.60	1.60
M0	1.37	-	1.57	1.58	1.65	1.65	1.65	1.65
M2	1.47	-	1.60	1.59	1.65	1.65	1.65	1.65
M5	1.61	-	1.65	_	_	_	-	-